Sense of Number Visual Calculation Policy

Code	Section	Basic Edition (99 Slides)		Expanded Edition	
		How mony posters?	Slide Members	How meny posters?	${ }_{\text {Slide Nembers }}$
	Introduction Slides	3	${ }^{1-3}$	3	${ }^{1-3}$
KS	KS: Key Concepts	7	4-10	7	4-10
	Vocabulary Slides	9	11-19	9	11-19
C	Counting Policy	-	-	13	21-33
A	Addition	7	20-26	40	34-73
MA	Mental Addtion	5	27-31	40	74-113
S	Subtraction	11	32-42	33	114-146
MS	Mental Subtraction	-	-	4	147-150
M	Multiplication	9	43-51	32	151-182
MM	Mental Multiplication	1	52	30	183-212
D	Division	14	53-66	41	213-253
	Calculation Cards	-	-	9	254-262
	Multiplication Tobles	-	-	11	263-273
	Expanded Edition Progression (Year groups for New Curriculum)	13	67-79	19	274-291
	Alternative lagouts (Column and Subtraction on a Number Line)		80-90	29	292-321

Guide to using a Visual Calculation Policy

The Sense of Number Visual Calculation Policy provides an visual representation of a school's written and mental calculation policy.

Typical uses:
Classoom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall.
Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.
Parents: The slides are used to communicate to parents the methods being taught and used within school.
Website: Slides from the VCP are inserted on a schools' maths webpages.
(Please note: the VCP should not be made available for download)

KC1: Key Concepts!

Addition

$8+2=10$

"What is 8 add 2?" Answer: 10

8-2 = 6

"What is 8 subtract 2 ?" Answer: 6
"The difference between 8 and 2 is 6 "

KC2: Key Concepts!

Multiplication

"8 multiplied by 2" means "8, 2 times" or "2 groups of 8"

"8 divided by 2" means "How many groups of 2 are there in 8?" Answer: 4
("8 shared into 2 sets is 4")

Y
Glynne Primary School

3
 Do need an expanded of a standard method?
 0

老苑

Calculation Vocabulary

equivalent to $=$ equals
 same value as balance

Sulbtrection

Glynne Primary School

Addition Vocabulary

increase

altogether

爫台: Glynne Primary School

Subtraction Vocabulary

count back decrease

- difference between

營 Glynne Primary School

Multiplication Vocabulary

multiple

lots of multiply

\mathbf{x}

Division Vocabulary

淡 Glynne Primary School

Addition Calculation

逖: Glynne Primary School

Subtraction Calculation

Multiplication Calculation

璥: Glynne Primary School

Division Calculation

淡焱 Glynne Primary School

Al: Objects \& Pictures

"If I have $\mathbf{3}$ and then 5 more, how many altogether? Answer: 8"縈: Glynne Primary School

A2: Counting On

A3: Forwards Jump
 $43+24=67$

A4: Partitioning

$$
\begin{array}{r}
43+24=67 \\
40+20=60 \\
3+4=\frac{7}{67}
\end{array}
$$

A5: Partition Jot

A7: Column Addition

$100 \quad 10 \quad 1$

MA1: Partitioning

$45+82=127$

MA2: Counting On

MA3: Number Bonds

MA4: Double \& Adjust

MA5: Round \& Adjust

S1: Objects

"What do I get if I take 3 away from 7? Answer: $\mathbf{4}^{\text {" }}$

S2: What's the Difference?

"How many more is $\mathbf{7}$ than 5 ? What is the difference?"

S3: Counting Back

[^0]
S4: Counting On

"How many more is $\mathbf{1 2}$ than 9 ? What is the difference?"

S5: Backwalds Boing

S6: Backwards Bounce

\section*{| 64 | 65 | 66 | 67 | 77 |
| :--- | :--- | :--- | :--- | :--- |
 }

淡 Glynne Primary School

S7: Backwards Jump

S8: Triple Jump!

S9：10s Jump，1s Jumpl

S10: Expanded Column

Subtraction (100, $10,1 \mathrm{~s}$)

S11: Column Subtraction

M1: Repeated Addition (Groups)

$5 \times 3=5+5+5=15$

" 5 multiplied by 3 " means " 5 , 3 times", which gives " 3 lots of 5 "!
淡 Glynne Primary School

M2: Repeated Addition (Number Line)

M3: Arrays

$3 \times 5=15$ or $5 \times 3=15$
燊 Glynne Primary School

M4: Multi Boing!

$$
15 \times 5=75
$$

$$
\begin{array}{r}
10 \times 5=50 \\
5 \times 5=\frac{25}{75} \\
\hline
\end{array}
$$

M5: Grid Method

Short Multiplication

$15 \times 5=75$

$$
50+25=75
$$

M8: Erid Method
 Long Multiplication

$43 \times 65=2795$

x	40	3
60	2400	180
5	200	15

$2400+180+200+15=2795$

㸚

M9: Long Multiplication

D1: Sharing (concept)

"If I share 6 into 2 equal amounts, how many in each group?" Answer: 3

D2: Grouping (concept)

"How many groups of 2 can I make out of 6? Answer: 3

D3: Division as Sharing

$12 \div 2=6$

"If I share 12 into 2 equal amounts, how many in each group?" Answer: 6

姺 Glynne Primary School

D4: Division as Grouping

$12 \div 2=6$

"How many groups of 2 can I fit into 12?" Answer: 6

D5: Grouping en aNumber Line

$20 \div 5=4$

"How many $5 s$ in 20?" Answer: 4

D6: Grouping Grid

"How many times can I fit (groups of) 4 into 27 ?" Answer: 6r3

D7: Chunking Jump

$$
4 \times 10 \quad 4 \times 8
$$

18
"How many 4s in 72?" Answer: 18

D8: Find the Hunk!

D9: Mega Hunk!

$136 \div 4=34$

> Mega Hunk!

Chunk 120 + 16

$$
\div 4
$$

$$
30+4=34
$$

D10: Short Division

$136 \div 4=34$

D11: Chunking

D12: Long

 Short Division Method

D13: Long Division

 26 r21 $3 7 \longdiv { 9 8 3 }$ - 740 (37 $\times 20$) 243$-\frac{222}{21}(37 \times 6)$
$983+37=26 r 21$

D14: Long Division

 26「21 $3 7 \longdiv { 9 8 3 }$
$983+37=26 r 21$

Sense of Number Visual Calculations Policy

Expanded Edition 2014 by Dave Godfrey, Anthony Reddy and Laurence Micks

The folllowing pages contuln a snapethot of the 285 slide, Sense of Number Exppended Edittion of the VGPa It contelins © Gounting Pollicy, levalod progression of strategles found in the Bastic Edition and odditionel Subtroction \& Multiplilioation Mented Method sllides,

This odition is also avallable for bespoke preparettion at odditilonel cost of el100.

	Al: Objects \& Pictures						Addition Calculation \qquad	Addition Vocabulary increase (Idd total 4 plus addition more count on sumi altogether
	Ala: Largest Number 1st $\begin{gathered} 5+3=8 \end{gathered}$ 5	A2: Counting On $5+3=8$						

$\begin{aligned} & 687+248=935 \\ & 800+120+15 \end{aligned}$	A6: Expanded Column $\begin{array}{r} 6010 \\ +687 \\ +248 \\ \hline 120 \\ \hline 800 \\ \hline 935 \\ \hline \end{array}$	A7: Column $\begin{array}{r} 1008^{1} \\ +248 \\ \hline 025 \end{array}$

G
Gynne Primary School

	S1: Objects - ○○○あす $7-3=4$ 욱 5 \qquad						Subtraction Calculation	
		S2: Whot's the Difference? 9000000 $7-5=2$ \qquad	S3: Counting Back $12-3=9$ 56 5 \qquad	S4: Counting On 12-9 = 3				
			S5: Backwards Boing	S4a: Counting On $83-78=5$				
				(S8: Triple Jumpl)	(S9: 10s Jump, 1s Jumpl)	(S10: Expanded Column) $\begin{gathered} 87-23=64 \\ 807 \\ 203 \\ 604 \end{gathered}$	(S11: Column Subtraction) \qquad	

| | | |
| :---: | :---: | :---: | :---: |

			（M3：Arrays） 2 groups of 5 counters＂or＂ 5 groups of 2 counters＂－＂10 counters altogether （6） 5 \qquad				Multiplication Calculation	
	M1：Repeated Addition 000 $5 \times 3=5+5+5=15$ －	M2：Repeated Addirition $5 \times 3=5+5+5=15$						
	Mx2：Table Facts $2 x$ table （8） 5	Mx5：Table Facts 5x table	Mx10：Table Facts 10x table 웅 \qquad					
	Mx3：Table Facts $3 x$ table	Mx4：Table Facts $4 x$ table	Mx8：Table Facts $8 x$ table \qquad					
		M4：Multi Boing！		$\begin{gathered} \text { M4a: Partitioning } \\ 15 \times 5=75 \\ 10 \times 5=50 \\ 5 \times 5=25 \\ 50+25=75 \end{gathered}$	M5：Grid Method $\begin{aligned} & 15 \times 5=75 \\ & \begin{array}{\|c\|c\|c\|} \hline \mathbf{x} & 10 & 5 \\ \hline \mathbf{5} & 50 & 25 \\ \hline \end{array} \\ & \hline \mathbf{5 0}+\mathbf{2 5}=\mathbf{2 5}=\mathbf{7 5} \end{aligned}$	（M6：Expanded Column） $\begin{array}{r} 15 \\ \left.\times \quad \begin{array}{r} 5 \\ \hline 25 \\ \hline 5 \times 5) \\ \hline 75 \\ \hline 75 \times 10) \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土\right) \\ \hline \end{array}$	$\begin{aligned} & \text { (M7: Cohmn Multiplication) } \\ & \times \frac{15}{15} \\ & \frac{75}{2} \\ & \hline \end{aligned}$	
	Mx6：Table Facts 6x table 웅） 5	Mx7：Table Facts $7 x$ table \square	Mx9：Table Facts 9x table		M5a：Grid Method $\begin{aligned} & 43 \times 6=258 \\ & \begin{array}{\|c\|c\|c\|} \hline x & 40 & 3 \\ \hline 6 & 240 & 18 \\ \hline 240+18=258 \end{array} \end{aligned}$	（M6：Expanded Column） $\begin{array}{r} { }^{10013} \\ \times \quad 6 \\ \hline 240(6 \times 3) \\ 240(6 \times 40) \\ \hline 258 \end{array}$		
	Mxil：Table Facts 11x table 5 5	Mx12：Table Facts 12x table	\square			M6：Expanded Column $\begin{array}{r} 147 \\ \times \quad 4 \\ \hline 28 \\ \hline 16 \times 7) \\ 400 \\ \hline 4 \times 40) \\ \hline \end{array}$		M7a Column Multiplication $\begin{array}{r} 3647 \\ \times \quad 4 \\ \frac{14588}{212} \end{array}$
					M8：Grid Method $\begin{aligned} & 43 \times 65=2795 \\ & \begin{array}{\|c\|c\|c\|} \hline \mathbf{x} & 40 & 3 \\ \hline 60 & 2400 & 180 \\ \hline 5 & 200 & 15 \\ \hline 2400+180+200+15=2795 \\ \hline \end{array} \\ & \hline \end{aligned}$		M9：Long Multiplication	

Y1						D		
Y2								
Y2								
Y3								
Y3								
Y3								
Y4								
Y5							\square	mome

Y5								
Y5					$\left\|\begin{array}{c} \text { DIOe: Short Division } \\ 5978+7=854 \\ \mathbf{8 5 4} \\ 7 \longdiv { 5 ^ { 2 } 9 ^ { 2 } 7 ^ { 2 } 8 } \end{array}\right\|$			
Y5		$1 \sqrt{2}$	\square					
Y6								
Y6					\square			
Y6								
Y6					$37 \cdot \frac{26 \cdot 22}{988}$			
Y6								\square

$|$| MM1: Jump! | |
| :---: | :---: |
| $\mathbf{x 1 0 0}$ | $\overline{3400}$ |
| $\mathbf{x 1 0}$ | 340 |
| | 34 |
| +10 | 3.4 |
| +100 | $\mathbf{0 . 3 4}$ |

MM2: Re-ordering	MM3: Partitioning
$\begin{gathered} (9 \times 2) \times 5 \\ 18 \end{gathered} \times 5=90$	$15 \times 5=75$
$\begin{aligned} (9 \times 5) & \times 2 \\ 45 & \times 2=90 \end{aligned}$	
$\begin{gathered} (2 \times 5) \times 9 \\ 10 \end{gathered} \times 9=90 * *$	${\underset{(10 \times 5)}{50}+\underset{(5 \times 5)}{25}=75}_{25}$

MM4: Round \& Adjust	MM5: Doubling
$49 \times 3=147$	Double 17 = 34
$\begin{gathered} (50 \times 3)-(1 \times 3) \\ 150-3=147 \end{gathered}$	$20+14=34$

MM2a: Re-ordering $\begin{aligned} &(7 \times 4) \times 5 \\ & 28 \times 5=140 \\ &(7 \times 5) \times 4 \\ & 35 \times 4=140 \\ &(4 \times 5) \times 7 \\ & 20 \times 7=140 * \end{aligned}$	MM3a: Partitioning $\begin{aligned} & 37 \times 4=148 \\ & 120 \times+\underset{(74)}{28}=148 \end{aligned}$

MM4a: Round \& Adjust	MM5a: Doubling
$198 \times 4=792$	Double $37=74$
$(200 \times 4)-(2 \times 4)$	$/$
$800-8=792$	$60+14=74$

$|$| MM4b: Round \& Adjust |
| :---: |
| $3.9 \times 5=19.5$ |
| $(4 \times 5)-(0.1 \times 5)$ |
| $20-0.5=19.5$ |

					M4a: Partitioning $\begin{array}{r} 15 \times 5=75 \\ 10 \times 5=50 \\ 5 \times 5=25 \\ 50+25=75 \end{array}$

MM5g: Doubling
 Double 3.7 = 7.4
 $6+1.4=7.4$

Glynne Primary School

	Poster Guide Visual colculation Policy	O Guide to using a		KC1: Key Concepts!		(ealculation Vocabulary			
$\begin{aligned} & \text { Cla: Number Order } \\ & \begin{array}{lllllll} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array} \end{aligned}$							c3: How Many? 12345 5		
C4: Arranging 7	C4a: Arranging	C4b: Arranging \square			C5: Counting Forwards	C6: Counting On	C7: Counting Back	c8: Counting in Steps	
	A: Base 10 $43+24=67$ \\|	B: Arrow Cards $\begin{aligned} & 43+24=67 \\ & \frac{40}{3}+\frac{20}{4}=\frac{60}{7} \end{aligned}$	C: Hundred Square $\mathbf{4 3}+\mathbf{2 4 = 6 7}$	D: Numicon $43+24=67$ \qquad 5 5 \qquad	E: Place Value Counters $43+24=67$ 榢 5	F: Money $43+24=67$ (20)	G: Abacus	H: Number Line $43+24=67$	
						ary	-		

Sense of Number Standard Alternative Slides by Dave Godfrey

dave@senseofnumber.co.uk Tel: 01904778848
The following slides the standard ollternotive slide connigurations to the main set of slindes.

A7: Column Addition

 100101

S3: Counting Back

S5: Backwalds Boing

淡炎 Glynne Primary School

S6: Backwalds Bounce

S7: Backwalds Jump

-7

M7: Column Multiplication
 $100 \quad 10 \quad 1$

M9: Long Multiplication

[^0]: Glynne Primary School

